By popular demand—two new self-guided courses from Lectica

Introducing LAP-1 & LAP-2 Light

For some time now, people have been asking us how they can learn at least some of what we teach in our certification courses—but without the homework! Well, we’ve taken the plunge, with two new self-guided courses.


All profits from sales support Lectica’s mission to deliver the world’s best assessments free of charge to K-12 teachers everywhere!


LAP-1 Light

In LAP-1 Light, we’ve brought together the lectures and much of the course material offered in the certification version of the course—Lectical Assessments in Practice for Coaches. You’ll take a deep dive into our learning model and learn how two of our most popular adult assessments—the LDMA (focused on leadership decision making) and the LSUA (focused on leaders’ understanding of themselves in workplace relationships)—are used to support leader development.

This course is perfect for coaches or consultants who are thinking about certifying down the road.

LEARN MORE

LAP-2 Light

In LAP-2 Light, we’re offering all of the lectures and much of the course material from LAP-2—Lectical Assessments in Practice for Recruitment Professionals. You’ll learn about Lectica’s Human Capital Value Chain, conventional recruitment practices, how to evaluate recruitment assessments, and all about Lectica’s recruitment products—including Lectica First (for front-line to mid-level recruitment) and Lectica Suite (for senior recruitment).

This course is perfect for recruitment professionals of all kinds, or for anyone who is toying with the idea of becoming accredited in the use of our recruitment tools.

LEARN MORE

Upgrades

Upgrades to our certification courses are available for both LAP-1 Light and LAP-2 Light!

 

Please follow and like us:

Fit-to-role, well-being, & productivity

How to recruit the brain’s natural motivational cycle—the power of fit-to-role.

People learn and work better when the challenges they face in their roles are just right—when there is good fit-to-role. Improving fit-to-role requires achieving an optimal balance between an individual’s level of skill and role requirements. When employers get this balance right, they increase engagement, happiness (satisfaction), quality of communication, productivity, and even cultural health.

video version

Here’s how it works.

In the workplace, the challenges we’re expected to face should be just big enough to allow for success most of the time, but not so big that frequent failure is inevitable. My colleagues and I call this balance-point the Goldilocks zone, because it’s where the level of challenge is just right. Identifying the Goldilocks zone is important for three reasons:

First, and most obviously, it’s not good for business if people make too many mistakes.

Second, if the distance between employees’ levels of understanding and the difficulty of the challenges they face is too great, employees are less likely to understand and learn from their mistakes. This kind of gap can lead to a vicious cycle, in which, instead of improving or staying the same, performance gradually deteriorates.

Third, when a work challenge is just right we’re more likely to enjoy ourselves—and feel motivated to work even harder. This is because challenges in the Goldilocks zone, allow us to succeed just often enough to stimulate our brains to release pleasure hormones called opioids. Opioids give us a sense of satisfaction and pleasure. And they have a second effect. They also trigger the release of dopamine—the striving hormone—which motivates us to reach for the next challenge (so we can experience the satisfaction of success once again).

The dopamine-opioid cycle will repeat indefinitely in a virtuous cycle, but only when enough of our learning challenges are in the zone—not too easy and not too hard. As long as the dopamine-opioid cycle keeps cycling, we feel engaged. Engaged people are happy people—they tend to feel satisfied, competent, and motivated. [1]

People are also happier when they feel they can communicate effectively and build understanding with those around them. When organizations get fit-to-role right for every member of a team, they’re also building a team with members who are more likely to understand one another. This is because the complexity level of role requirements for different team members are likely to be very similar. So, getting fit to role right for one team member means building a team in which members are performing within a complexity range that makes it relatively—but not too—easy for members to understand one another. Team members are happiest when they can be confident that—most of the time and with reasonable effort—they will be able to achieve a shared understanding with other members.

A team representing a diversity of perspectives and skills, composed of individuals performing within a complexity range of 10–20 points on the Lectical Scale is likely to function optimally.

Getting fit-to-role right, also ensures that line managers are slightly more complex thinkers than their direct reports. People tend to prefer leaders they can look up to, and most of us intuitively look up to people who think a little more complexly than we do. [2] When it comes to line managers, If we’re as skilled as they are, we tend to wonder why they’re leading us. If we’re more skilled than they are, we are likely to feel frustrated. And if they’re way more skilled than we are, we may not understand them fully. In other words, we’re happiest when our line managers challenge us—but not too much. (Sound familiar?)

Most people work better with line managers who perform 15–25 points higher on the Lectical Scale than they do.

Unsurprisingly, all this engagement and happiness has an impact on productivity. Individuals work more productively when they’re happily engaged. And teams work more productively when their members communicate well with one another.[2]

The moral of the story

The moral of this story is that employee happiness and organizational effectiveness are driven by the same thing—fit-to-role. We don’t have to compromise one to achieve the other. Quite the contrary. We can’t achieve either without achieving fit-to-role.

Summing up

To sum up, when we get fit to role right—in other words, ensure that every employee is in the zone—we support individual engagement & happiness, quality communication in teams, and leadership effectiveness. Together, these outcomes contribute to productivity and cultural health.

Getting fit-to-role right requires top-notch recruitment and people development practices, starting with the ability to measure the complexity of (1) role requirements and (2) people skills.

When my colleagues and I think about the future of recruitment and people development, we envision healthy, effective organizations characterized by engaged, happy, productive, and constantly developing employees & teams. We help organizations achieve this vision by…

  • reducing the cost of recruitment so that best practices can be employed at every level in an organization;
  • improving predictions of fit-to- role;
  • broadening the definition of fit-to-role to encompasses the role, the team, and the position of a role in the organizational hierarchy; and
  • promoting the seamless integration of recruitment with employee development strategy and practice.

[1] Csikszentmihalyi, M., Flow, the psychology of happiness. (2008) Harper-Collins.

[2] Oishi, S., Koo, M., & Akimoto, S. (2015) Culture, interpersonal perceptions, and happiness in social interactions, Pers Soc Psychol Bull, 34, 307–320.

[3] Oswald, A. J., Proto, E., & Sgroi, D. (2015). Happiness and productivity. Journal of labor economics, 33, 789-822.

Please follow and like us:

Statistics for all: Prediction

Why you might want to reconsider using 360s and EQ assessments to predict recruitment success


Measurements are often used to make predictions. For example, they can help predict how tall a 4-year-old is likely to be in adulthood, which students are likely to do better in an academic program, or which candidates are most likely to succeed in a particular job.

Some of the attributes we measure are strong predictors, others are weaker. For example, a child’s height at age 4 is a pretty strong predictor of adult height. Parental height is a weaker predictor. The complexity of a person’s workplace decision making, on its own, is a moderate predictor of success in the workplace. But the relation between the complexly of their workplace decision making and the complexity of their role is a strong predictor.

How do we determine the strength or a predictor? In statistics, the strength of predictions is represented by an effect size. Most effect size indicators are expressed as decimals and range from .00 –1.00, with 1.00 representing 100% accuracy of prediction. The effect size indicator you’ll see most often is r-square. If you’ve ever been forced to take a statistics course—;)—you may remember that r represents the strength of a correlation. Before I explain r-square, let’s look at some correlation data.

The four figures below represent 4 different correlations, from weakest (.30) to strongest (.90). Let’s say the vertical axis (40 –140) represents the level of success in college, and the horizontal axis (50 –150) represents scores on one of 4 college entrance exams. The dots represent students. If you were trying to predict success in college, you would be wise to choose the college entrance exam that delivered an r of .90.

Why is an r of .90 preferable? Well, take a look at the next set of figures. I’ve drawn lines through the clouds of dots (students) to show regression lines. These lines represent the prediction we would make about how successful a student will be, given a particular score. It’s clear that in the case of the first figure (r =.30), this prediction is likely to be pretty inaccurate. Many students perform better or worse than predicted by the regression line. But as the correlations increase in size, prediction improves. In the case of the fourth figure (r =.90), the prediction is most accurate.

What does a .90 correlation mean in practical terms? That’s where r-square comes in. If we multiply .90 by .90 (calculate the square), we get an r-square of .81. Statisticians would say that the predictor (test score), explains 81% of the variance in college success. The 19% of the variance that’s not explained (1.00 -.81 =.19) represents the percent of the variance that is due to error (unexplained variance). The square root of 19% is the amount of error (.44).

Even when r = .90, error accounts for 19% of the variance.

Correlations of .90 are very rare in the social sciences—but even correlations this strong are associated with a significant amount of error. It’s important to keep error in mind when we use tests to make big decisions—like who gets hired or who gets to go to college. When we use tests to make decisions like these, the business or school is likely to benefit—slightly better prediction can result in much better returns. But there are always rejected individuals who would have performed well, and there are always accepted individuals who will perform badly.

For references, see: The complexity of national leaders’ thinking: How does it measure up?

Let’s get realistic. As I mentioned earlier, correlations of .90 are very rare. In recruitment contexts, the most predictive assessments (shown above) correlate with hire success in the range of .50 –.54, predicting from 25% – 29% of the variance in hire success. That leaves a whopping 71% – 75% of the variance unexplained, which is why the best hiring processes not only use the most predictive assessments, but also consider multiple predictive criteria.

On the other end of the spectrum, there are several common forms of assessment that explain less than 9% of the variance in recruitment success. Their correlations with recruitment success are lower than .30. Yet some of these, like 360s, reference checks, and EQ, are wildly popular. In the context of hiring, the size of the variance explained by error in these cases (more than 91%) means there is a very big risk of being unfair to a large percentage of candidates. (I’m pretty certain assessment buyers aren’t intentionally being unfair. They probably just don’t know about effect size.)

If you’ve read my earlier article about replication, you know that the power-posing research could not be replicated. You also might be interested to learn that the correlations reported in the original research were also lower than .30. If power-posing had turned out to be a proven predictor of presentation quality, the question I’d be asking myself is, “How much effort am I willing to put into power-posing when the variance explained is lower than 9%?”

If we were talking about something other than power-posing, like reducing even a small risk that my child would die of a contagious disease, I probably wouldn’t hesitate to make a big effort. But I’m not so sure about power-posing before a presentation. Practicing my presentation or getting feedback might be a better use of my time.

Summing up (for now)

A basic understanding of prediction is worth cultivating. And it’s pretty simple. You don’t even have to do any fancy calculations. Most importantly, it can save you time and tons of wasted effort by giving you a quick way to estimate the likelihood that an activity is worth doing (or product is worth having). Heck, it can even increase fairness. What’s not to like?


My organization, Lectica, Inc., is a 501(c)3 nonprofit corporation. Part of our mission is to share what we learn with the world. One of the things we’ve learned is that many assessment buyers don’t seem to know enough about statistics to make the best choices. The Statistics for all series is designed to provide assessment buyers with the knowledge they need most to become better assessment shoppers.

Statistics for all: Replication

Statistics for all: What the heck is confidence?

Statistics for all: Estimating confidence

 

Please follow and like us:

World Economic Forum—tomorrow’s skills

The top 10 workplace skills of the future.

Sources: Future of Jobs Report, WEF 2017

In a recent blog post—actually in several recent blog posts—I've been emphasizing the importance of building tomorrow's skills. These are the kinds of skills we all need to navigate our increasingly complex and changing world. While I may not agree that all of the top 10 skills listed in the World Economic Forum report (shown above) belong in a list of skills (Creativity is much more than a skill, and service orientation is more of a disposition than a skill.) the flavor of this list is generally in sync with the kinds of skills, dispositions, and behaviors required in a complex and rapidly changing world.

The "skills" in this list cannot be…

  • developed in learning environments focused primarily on correctness or in workplace environments that don't allow for mistakes; or
  • measured with ratings on surveys or on tests of people's ability to provide correct answers.

These "skills" are best developed through cycles of goal setting, information gathering, application, and reflection—what we call virtuous cycles of learning—or VCoLs. And they're best assessed with tests that focus on applications of skill in real-world contexts, like Lectical Assessments, which are based on a rich research tradition focused on the development of understanding and skill.

 

Please follow and like us:

Lectica’s Human Capital Value Chain—for organizations that are serious about human development

Lectica's tools and services have powerful applications for every process in the human capital value chain. I explain how in the following video.

For links to more information see the HCVC page on Lecticalive. For references that support claims made in the video, see the post—Introducing LecticaFirst.

 

Please follow and like us: