National leaders’ thinking: What we’ve learned so far…

In this article, I’ll be providing a summary of results from each group of leaders observed as part of Lectica’s National Leaders’ Study. Each time my colleagues and I complete a round of research for a particular group of national leaders, the results will first be presented in a special article, then summarized here. This article will be written and rewritten over several months, with regular updates. If at any point you want to get a quick sense of what we’ve learned so far, just come back to this article for an overview.

Summary of quantitative results

The following table compares the scores received by the leaders of countries included in the National Leaders’ Study so far. (If you don’t yet know what I mean by complexity level, see the first article in this series.

Country

Complexity score range

Complexity score difference

Leader average

Media average

Leader average – media average

USA

1054–1163

109

1116

1137 (without P. Trump

1124

-8

13

Australia

1111–1133

22

1125

1111

14

Key observations

  1. Lowest score: The average complexity level of President Trump’s interviews was 1054—near the average score received by 12th graders in a good high school.
  2. Highest score: The mean score for President Obama’s first two interviews was 1193. This is well above the average score received by CEOs in Lectica’s database and is in the ideal range for a national leader, who must be able to comprehend and work with issues that have a complexity level of 1200 and above.
  3. Fit-to-role: With the exception of Barack Obama, none of the leaders so far has demonstrated (in their interviews)  a level of complexity that is a good match for the complexity level of many of the problems faced in office (1200+).
  4. Third interview scores: The scores of three out of 5 leaders whose scores at time 1 were above the level of average media scores—Barack Obama, Tony Abbott, and Malcolm Turnbull—dropped closer to media averages in their third interviews. We’re monitoring this potential trend.
  5. Media score comparison: The mean score for sampled U. S. media was 13 points higher than the mean score for Australian media.
  6. Leader score comparison: If we exclude President Trump as an extreme outlier, the average score for U. S. Presidents was 9 points higher than the average score for Australian prime ministers.

Emerging concerns

  1. Difficulty evaluating candidates: In the interest of accessibility, voters are systematically being deprived of the evidence required to evaluate the competence of candidates. High-profile interview responses of national leaders are often the only place to observe anything like the actual thinking of candidates for office, yet it is well known that candidates and leaders are trained to simplify responses to interview questions. Moreover, national leaders’ speeches are written in language that simplifies issues to make them more accessible to the general public, and many candidates have not produced written works that can be relied upon as evidence of current capacity.
  2. Danger of electing incompetent candidates: When all candidates produce responses and read speeches in which issues are systematically simplified, it becomes very difficult to distinguish between different candidates’ level of understanding. This makes it easier to elect candidates that lack the level of understanding and skill required to cope with highly complex national and international issues.

Other articles in this series

Please follow and like us:

How to interpret reading level scores

Fleisch Kincaid and other reading level metrics are sometimes employed to compare the arguments made by politicians in their speeches, interviews, and writings. What are these metrics and what do they actually tell us about these verbal performances?

Fleisch Kincaid examines sentence, word length, and syllable number. Texts are considered “harder” when they have longer sentences and use words with more letters, and “easier” when they have shorter sentences and use words with fewer letters. For decades, Fleisch Kincaid and other reading level metrics have been used in word processors. When you are advised by a grammar checker that the reading level of your article is too high, it’s likely that this warning is based on word and sentence length.

Other reading level indicators, like Lexiles, use the commonness of words as an indicator. Texts are considered to be easier when the words they contain are more common, and more difficult when the words they contain are less common.

Because reading-level metrics are embedded in most grammar checkers, writers are continuously being encouraged to write shorter sentences with fewer, more common words. Writers for news media, advertisers, and politicians, all of whom care deeply about market share, work hard to create texts that meet specific “grade level” requirements. And if we are to judge by analyses of recent political speeches, this has considerably “dumbed down” political messages.

Weaknesses of reading level indicators

Reading level indicators look only at easy-to-measure things like length and frequency. But length and frequency are proxies for what they purport to measure—how easy it is to understand the meaning intended by the author.

Let’s start with word length. Words of the same length or number of syllables can have meanings that are more or less difficult to understand. The word, information has 4 syllables and 12 letters. The word, validity has 4 syllables and 8 letters. Which concept, information or validity, do you think is easier to understand? (Hint, one concept can’t be understood without a pretty rich understanding of the other.)

How about sentence length? These two sentences express the same meaning. “He was on fire.” “He was so angry that he felt as hot as a fire inside.” In this case, the short sentence is more difficult because it requires the reader to understand that it should be read within a context presented in an earlier sentence—”She really knew how to push his buttons.”

Finally, what about commonness? Well, there are many words that are less common but no more difficult to understand than other words. Take “giant” and “enormous.” The word, enormous doesn’t necessarily add meaning, it’s just used less often. It’s not harder, just less popular. And some relatively common words are more difficult to understand than less common words. For example, evolution is a common word with a complex meaning that’s quite difficult to understand, and onerous is an uncommon word that’s relatively easy to understand.

I’m not arguing that reducing sentence and word length and using more common words don’t make prose easier to understand, but metrics that use these proxies don’t actually measure understandability—or at least they don’t do it very well.

How reading level indicators relate to complexity level

When my colleagues and I analyze the complexity level of a text, we’re asking ourselves, “At what level does this person understand these concepts?” We’re looking for meaning, not word length or popularity. Level of complexity directly represents level of understanding.

Reading level indicators do correlate with complexity level. Correlations are generally within the range of .40 to .60, depending on the sample and reading level indicator. These are strong enough correlations to suggest that 16% to 36% of what reading-level indicators measure is the same thing we measure. In other words, they are weak measures of meaning.[1] They are stronger measures of factors that impact readability, but are not related directly to meaning—sentence and word length and/or commonness.

Here’s an example of how all of this plays out in the real world: The New York Times is said to have a grade 7 Fleisch Kincaid reading level, on average. But complexity analyses of their articles yield scores of 1100-1145. In other words, these articles express meanings that we don’t see in assessment responses until college and beyond. This would explain why the New York Times audience tends to be college educated.

We would say that by reducing sentence and word length, New York Times writers avoid making complex ideas harder to understand.

Summing up

Reading level indicators are flawed measures of understanding. They are also dinosaurs. When these tools were developed, we couldn’t do any better. But advances in technology, research methods, and the science of learning have taken us beyond proxies for understanding to direct measures of understanding. The next challenge is figuring out how to ensure that these new tools are used responsibly—for the good of all.

Please follow and like us:

President Trump on climate change

How complex are the ideas about climate change expressed in President Trump’s tweets? The answer is, they are even less complex than ideas he has expressed about intelligence, international trade, and immigration—landing squarely in level 10. (See the benchmarks, below, to learn more about what it means to perform in level 10.)

The President’s climate change tweets

It snowed over 4 inches this past weekend in New York City. It is still October. So much for Global Warming.
2:43 PM – Nov 1, 2011

 

It’s freezing in New York—where the hell is global warming?
2:37 PM – Apr 23, 2013

 

Record low temperatures and massive amounts of snow. Where the hell is GLOBAL WARMING?
11:23 PM – Feb 14, 2015

 

In the East, it could be the COLDEST New Year’s Eve on record. Perhaps we could use a little bit of that good old Global Warming…!
7:01 PM – Dec 28, 2017

Analysis

In all of these tweets President Trump appears to assume that unusually cold weather is proof that climate change (a.k.a., global warming) is not real. The argument is an example of simple level 10, linear causal logic that can be represented as an “if,then” statement. “If the temperature right now is unusually low, then global warming isn’t happening.” Moreover, in these comments the President relies exclusively on immediate (proximal) evidence, “It’s unusually cold outside.” We see the same use of immediate evidence when climate change believers claim that a warm weather event is proof that climate change is real.

Let’s use some examples of students’ reasoning to get a fix on the complexity level of President Trump’s tweets. Here is a statement from an 11th grade student who took our assessment of environmental stewardship (complexity score = 1025):

“I do think that humans are adding [gases] to the air, causing climate change, because of everything around us. The polar ice caps are melting.”

The argument is an example of simple level 10, linear causal logic that can be represented as an “if,then” statement. “If the polar ice caps are melting, then global warming is real.” There is a difference between this argument and President Trump’s argument, however. The student is describing a trend rather than a single event.

Here is an argument made by an advanced 5th grader (complexity score = 1013):

“I think that fumes, coals, and gasses we use for things such as cars…cause global warming. I think this because all the heat and smoke is making the years warmer and warmer.”

This argument is also an example of simple level 10, linear causal logic that can be represented as an “if,then” statement. “If the years are getting warmer and warmer, then global warming is real.” Again, the difference between this argument and President Trump’s argument is that the student is describing a trend rather than a single event.

I offer one more example, this time of a 12th grade student making a somewhat more complex argument (complexity score = 1035).

“The temperature has increased over the years and studies show that the ice is melting in the north and south pole, so, yes humans are causing climate change.”

This argument is also an example of level 10, linear causal logic that can be represented as an “if,then” statement. “If the temperature has increased and studies show that the ice at the north and south poles are melting, then humans are causing climate change. But in this case, the student has mentioned two trends (warming and melting) and explicitly uses scientific evidence to support her conclusion.

Based on these comparisons, it seems clear that President Trump’s Tweets about climate change represent reasoning at the lower end of level 10.

“Humans have caused a lot of green house gasses…and these have caused global warming. The temperature has increased over the years and studies show that the ice is melting in the north and south pole, so, yes humans are causing climate change.

This argument is also an example of level 10, linear causal logic that can be represented as an “if,then” statement. “If the temperature has increased and studies show that the ice at the north and south poles are melting, then humans are causing climate change. In this case, the student’s argument is a bit more complex than in previous examples. She has mentioned two variables (warming and melting) and explicitly uses scientific evidence to support her conclusion.

Based on these comparisons, it seems clear that President Trump’s Tweets about climate change represent reasoning at the lower end of level 10.

Reasoning in level 11

Individuals performing in level 11 recognize that climate is an enormously complex phenomenon that involves many interacting variables. They understand that any single event or trend may be part of the bigger story, but is not, on its own, evidence for or against climate change.

Summing up

It concerns me greatly that someone who does not demonstrate any understanding of the complexity of climate is in a position to make major decisions related to climate change.


Benchmarks for complexity scores

  • Most high school graduates perform somewhere in the middle of level 10.
  • The average complexity score of American adults is in the upper end of level 10, somewhere in the range of 1050–1080.
  • The average complexity score for senior leaders in large corporations or government institutions is in the upper end of level 11, in the range of 1150–1180.
  • The average complexity score (reported in our National Leaders Study) for the three U. S. presidents that preceded President Trump was 1137.
  • The average complexity score (reported in our National Leaders Study) for President Trump was 1053.
  • The difference between 1053 and 1137 generally represents a decade or more of sustained learning. (If you’re a new reader and don’t yet know what a complexity level is, check out the National Leaders Series introductory article.)

 

Please follow and like us:

President Trump on immigration

How complex are the ideas about immigration expressed in President Trump’s recent comments to congress?

On January 9th, 2018, President Trump spoke to members of Congress about immigration reform. In his comments, the President stressed the need for bipartisan immigration reform, and laid out three goals.

  1. secure our border with Mexico
  2. end chain migration
  3. close the visa lottery program

I have analyzed President Trump’s comments in detail, looking at each goal in turn. But first, his full comments were submitted to CLAS (an electronic developmental assessment system) for an analysis of their complexity level. The CLAS score was 1046. This score is in what we call level 10, and is a few points lower than the average score of 1053 awarded to President Trump’s arguments in our earlier research.


Here are some benchmarks for complexity scores:

  • The average complexity score of American adults is in the upper end of level 10, somewhere in the range of 1050-1080.
  • The average complexity score for senior leaders in large corporations or government institutions is in the upper end of level 11, in the range of 1150-1180.
  • The average complexity score (reported in our National Leaders Study) for the three U. S. presidents that preceded President Trump was 1137.
  • The difference between 1046 and 1137 represents a decade or more of sustained learning. (If you’re a new reader and don’t yet know what a complexity level is, check out the National Leaders Series introductory article.)

Border security

President Trump’s first goal was to increase border security.

Drugs are pouring into our country at a record pace and a lot of people are coming in that we can’t have… we have tremendous numbers of people and drugs pouring into our country. So, in order to secure it, we need a wall.  We…have to close enforcement loopholes. Give immigration officers — and these are tremendous people, the border security agents, the ICE agents — we have to give them the equipment they need, we have to close loopholes, and this really does include a very strong amount of different things for border security.”

This is a good example of a level 10, if-then, linear argument. The gist of this argument is, “If we want to keep drugs and people we don’t want from coming across the border, then we need to build a wall and give border agents the equipment and other things they need to protect the border.”

As is also typical of level 10 arguments, this argument offers immediate concrete causes and solutions. The cause of our immigration problems is that bad people are getting into our country. The physical act of keeping people out of the country is a solution to the this problem.

Individuals performing in level 11 would not be satisfied with this line of reasoning. They would want to consider underlying or root causes such as poverty, political upheaval, or trade imbalances—and would be likely to try to formulate solutions that addressed these more systemic causes.

Side note: It’s not clear exactly what President Trump means by loopholes. In the past, he has used this term to mean “a law that lets people do things that I don’t think they should be allowed to do.” The dictionary meaning of the term would be more like, “a law that unintentionally allows people to do things it was meant to keep them from doing.”

Chain migration

President Trump’s second goal was to end chain migration. According to Wikipedia, Chain migration (a.k.a., family reunification) is a social phenomenon in which immigrants from a particular family or town are followed by others from that family or town. In other words, family members and friends often join friends and loved ones who have immigrated to a new country. Like many U. S. Citizens, I’m a product of chain migration. The first of my relatives who arrived in this country in the 17th century, later helped other relatives to immigrate.

President Trump wants to end chain migration, because…

“Chain migration is bringing in many, many people with one, and often it doesn’t work out very well.  Those many people are not doing us right.”

I believe that what the President is saying here is that chain migration is when one person immigrates to a new country and lots of other people known (or related to?) that person are allowed to immigrate too. He is concerned that the people who follow the first immigrant aren’t behaving properly.

To support this claim, President Trump provides an example of the harm caused by chain migration.

“…we have a recent case along the West Side Highway, having to do with chain migration, where a man ran over — killed eight people and many people injured badly.  Loss of arms, loss of legs.  Horrible thing happened, and then you look at the chain and all of the people that came in because of him.  Terrible situation.”

The perpetrator—Sayfullo Saipov—of the attack Trump appears to be referring to, was a Diversity Visa immigrant. Among other things, this means he was not sponsored, so he cannot be a chain immigrant. On November 21, 2017, President Trump claimed that Saipov had been listed as the primary contact of 23 people who attempted to immigrate following his arrival in 2010, suggesting that Saipov was the first in a chain of immigrants. According to Buzzfeed, federal authorities have been unable to confirm this claim.

Like the border security example, Trump’s argument about chain migration is a good example of a level 10, if-then, linear argument. Here, the gist of his argument is that, If we don’t stop chain migration, then bad people like Sayfullo Saipov will come into the country and do horrible things to us. (I’m intentionally ignoring President Trump’s mistaken assertion that Saipov was a chain immigrant.)

Individuals performing in level 11 would not regard a single example of violent behavior as adequate evidence that chain immigration is a bad thing. Before deciding that eliminating chain migration was a wise decision, they they would want to know, for example, whether or not chain immigrants are more likely to behave violently (or become terrorists) than natural born citizens.

The visa lottery (Diversity Visa Program)

The visa lottery was created as part of the Immigration Act of 1990, and signed into law by President George H. W. Bush. Application for this program is free, The only way to apply is to enter your data into a form on the State Department’s website. Individuals who win the lottery must undergo background checks and vetting before being admitted into the United States. (If you are interested in learning more, the Wikipedia article on this program is comprehensive and well-documented.)

President Trump wants to cancel the lottery program

“…countries come in and they put names in a hopper.  They’re not giving you their best names; common sense means they’re not giving you their best names.  They’re giving you people that they don’t want.  And then we take them out of the lottery.  And when they do it by hand — where they put the hand in a bowl — they’re probably — what’s in their hand are the worst of the worst.”

Here, President Trump seems to misunderstand the nature of the visa lottery program. He claims that countries put forward names and that these are the names of people they do not want in their own countries. That is simply not the way the Diversity Visa Program works.

To support his anti-lottery position, Trump again appears to mention the case of Sayfullo Saipov (“that same person who came in through the lottery program).”

But they put people that they don’t want into a lottery and the United States takes those people.  And again, they’re going back to that same person who came in through the lottery program. They went — they visited his neighborhood and the people in the neighborhood said, “oh my God, we suffered with this man — the rudeness, the horrible way he treated us right from the beginning.”  So we don’t want the lottery system or the visa lottery system.  We want it ended.”

I think that what President Trump is saying here is that Sayfullo Saipov was one of the outcasts put into our lottery program by a country that did not want him, and that his new neighbors in the U. S. had complained about his behavior from the start.

This is not a good example of a level 10 argument. This is not a good example of an argument. President Trump completely misrepresents the Diversity Immigrant Visa Program, leaving him with no basis for a sensible argument.

Summing up

The results from this analysis of President Trump’s statements about immigration provides additional evidence that he tends to perform in the middle of level 10, and his arguments generally have a simple if, then structure. It also reveals some apparent misunderstanding of the law and other factual information.

It is a matter for concern when a President of the United States does not appear to understand a law he wants to change.

 

Please follow and like us:

President Trump on intelligence

How complex are the ideas about intelligence expressed in President Trump’s tweets?

President Trump recently tweeted about his intelligence. The media has already had quite a bit to say about these tweets. So, if you’re suffering from Trump tweet trauma this may not be the article for you.

But you might want to hang around if you’re interested in looking at these tweets from a different angle. I thought it would be interesting to examine their complexity level, and consider what they suggest about the President’s conception of intelligence.

In the National Leaders Study, we’ve been using CLAS — Lectica, Inc.’s electronic developmental scoring system—to score the complexity level of several national leaders’ responses to questions posed by respected journalists. Unfortunately, I can’t use CLAS to score tweets. They’re too short. Instead, I’m going to use the Lectical Dictionary to examine the complexity of ideas being expressed in them.


If you aren’t familiar with the National Leaders series, you may find this article a bit difficult to follow.


The Lectical Dictionary is a developmentally curated list of about 200,000 words or short phrases (terms) that represent particular meanings. (The dictionary does not include entries for people, places, or physical things.) Each term in the dictionary has been assigned to one of 30 developmental phases, based on its least complex possible meaning. The 30 developmental phases span first speech (in infancy) to the highest adult developmental phase Lectica has observed in human performance. Each phase represents 1/4 a level (a, b, c, or d). Levels range from 5 (first speech) to 12 (the most complex level Lectica measures). Phase scores are named as follows: 09d, 10a, 10b, 10c, 10d, 11a, etc. Levels 10 through 12 are considered to be “adult levels,” but the earliest phase of level 10 is often observed in middle school students, and the average high school student performs in the 10b to10c range.

In the following analysis, I’ll be identifying the highest-phase Lectical Dictionary terms in the President’s statements, showing each item’s phase. Where possible, I’ll also be looking at the form of thinking—black-and-white, if-then logic (10a–10d) versus shades-of-gray, nuanced logic (11a–11d)—these terms are embedded in.

The President’s statements

The first two statements are tweets made on 01–05–2018.

“…throughout my life, my two greatest assets have been mental stability and being, like, really smart.

The two most complex ideas in this statement are the notion of having personal assets (10c), and the notion of mental stability (10b).

“I went from VERY successful businessman, to top T.V. Star…to President of the United States (on my first try). I think that would qualify as not smart, but genius…and a very stable genius at that!”

This statement presents an argument for the President’s belief that he is not only smart, but a stable genius (10b-10c). The evidence offered consists of a list of accomplishments—being a successful (09c) businessman, being a top star, and being elected (09b) president. (Stable genius is not in the Lectical Dictionary, but it is a reference back to the previous notion of mental stability, which is in the dictionary at 10b.)

The kind of thinking demonstrated in this argument is simple if-then linear logic. “If I did these things, then I must be a stable genius.”

Later, at Camp David, when asked about these Tweeted comments, President Trump explained further…

“I had a situation where I was a very excellent student, came out, made billions and billions of dollars, became one of the top business people, went to television and for 10 years was a tremendous success, which you’ve probably heard.”

This argument provides more detail about the President’s accomplishments—being an excellent (08a) student, making billions and billions of dollars, becoming a top business person, and being a tremendous success (10b) in television. Here the president demonstrates the same if-then linear logic observed in the second tweet, above.

Summing up

The President has spoken about his intelligence on numerous occasions. Across all of the instances I’ve identified, he makes a strong connection between intelligence and concrete accomplishments — most often wealth, fame, or performance (for example in school or in negotiations). I could not find a single instance in which he attributed any part of these accomplishments to external or mitigating factors — for example, luck, being born into a wealthy family, having access to expert advice, or good employees. (I’d be very interested in seeing any examples readers can send my way!)

President Trump’s statements represent the same kind of logic and meaning-making my colleagues and I observed in the interview responses analysed for the National Leaders’ series. President Trump’s logic in these statements has a simple, if-then structure and the most complex ideas he expresses are in the 10b to10c range. As yet, I have seen no evidence of reasoning above this range.

The average score of a US adult is in the 10c–10d range.

 

Please follow and like us:

Complexity level—A primer

image of a complex neural network—represents complexity level

What is complexity level? In my work, a complexity level is a point or range on a dimension called hierarchical complexity. In this article, I’m not going to explain hierarchical complexity, but I am going to try to illustrate—in plain(er) English—how complexity level relates to decision-making skills, workplace roles, and curricula. If you’re looking for a more scholarly definition, you can find it in our academic publications. The Shape of Development is a good place to begin.

Background

My colleagues and I make written-response developmental assessments that are designed to support optimal learning and development. All of these assessments are scored for their complexity level on a developmental scale called the Lectical Scale. It’s a scale of increasing hierarchical complexity, with 13 complexity levels (0–12) that span birth through adulthood. On this scale, each level represents a way of seeing the world. Each new level builds upon the previous level, so thinking in a new complexity level is more complex and abstract than thinking at the precious level. The following video describes levels 5–12.

We have five  ways of representing Lectical Level scores, depending on the context: (1) as whole levels (9, 10, 11, etc.), (2) as decimals (10.35, 11.13, etc.), (3) as 4 digit numbers (1035, 1113, etc.), (4) as 1/4 of a level phase scores (10a, 10b, 10c, 10d, 11a, etc.), and (5) as 1/2 of a level zone scores (early level 10, advanced level 10; early level 11, etc.).

Interpreting Lectical (complexity level) Scores

Lectical Scores are best thought of in terms of the specific skills, meanings, tasks, roles, or curricula associated with them. To illustrate, I’m including table below that shows…

  • Lectical Score ranges for the typical complexity of coursework and workplace roles (Role demands & Complexity demands), and
  • some examples of decision making skills demonstrated in these Lectical Score ranges.

In the last bullet above, I highlighted the term skill, because we differentiate between skills and knowledge. Lectical Scores don’t represent what people know, they represent the complexity of the skill used to apply what they know in the real world. This is important, because there’s a big difference between committing something to memory and understanding it well enough to put it to work. For example, in the 1140–1190 range, the first skill mentioned in the table below is the “ability to identify multiple relations between nested variables.” The Lectical range in this row does not represent the range in which people are able to make this statement. Instead, it represents the level of complexity associated with actually identifying multiple relations between nested variables.

Image of table providing information about complexity level. Click on image to go to readable version.

If you want to use this table to get an idea of how skills increase in complexity over time, I suggest that you begin by comparing skill descriptions in ranges that are far apart. For example, try comparing the skill description in the 945–995 range with the skill descriptions in the 1250–1300 range. The difference will be obvious. Then, work your way toward closer and closer ranges. It’s not unusual to have difficulty appreciating the difference between adjacent ranges—that generally takes time and training—but you’ll find it easy to see differences that are further apart.

When using this table as a reference, please keep in mind that several factors play a role in the actual complexity demands of both coursework and roles. In organizations, size and sector matter. For example, there can be a difference as large as 1/2 of a level between freshman curricula in different colleges.

I hope you find this table helpful (even though it’s difficult to read). I’ll be using it as a reference in future articles exploring some of what my colleagues and I have learned by measuring and studying complexity level—starting with leader decision-making.


Related articles

 

Please follow and like us:

National leaders’ thinking: The US presidents

How well does the thinking of recent US Presidents stand up to the complexity of issues faced in their role?pictures of the last 4 US presidentsSpecial thanks to my Australian colleague, Aiden M. A. Thornton, PhD. Cand., for his editorial and research assistance.

This is the second in a series of articles on the complexity of national leaders’ thinking, as measured with CLAS, a newly validated electronic developmental scoring system. This article will make more sense if you begin with the first article in the series.

Just in case you choose not to read or revisit the first article, here are a few things to keep in mind.

  • I am an educational researcher and the CEO of a nonprofit that specializes in measuring the complexity level of people’s thinking and supporting the development of their capacity to work with complexity.
  • The complexity level of leaders’ thinking is one of the strongest predictors of leader advancement and success.
  • Many of the issues faced by national leaders require principles thinking (level 12 on the skill scale, illustrated in the figure below).
  • To accurately measure the complexity level of someone’s thinking (on a given topic), we need examples of their best thinking. In this case, that kind of evidence wasn’t available. As an alternative, my colleagues and I have chosen to examine the complexity level of Presidents’ responses to interviews with prominent journalists.

The data

In this article, we examine the thinking of the four most recent Presidents of the United States — Bill Clinton, George W. Bush, Barack Obama, and Donald Trump. For each president, we selected 3 interviews, based on the following criteria: They

  1. were conducted by prominent journalists representing respected news media;
  2. included questions that requested explanations of the president’s perspective; and
  3. were either conducted within the president’s first year in office or were the earliest interviews we could locate that met the first two criteria.

As noted in the introductory article of this series, we do not imagine that the responses provided in these interviews necessarily represent competence. It is common knowledge* that presidents and other leaders typically attempt to tailor messages for their audiences, so even when responding to interview questions, they may not show off their own best thinking.

Media also tailor writing for their audiences, so to get a sense of what a typical complexity level target for top media might be, we used CLAS to score 11 articles on topics similar to those discussed by the four presidents in their interviews. We selected these articles at random — literally selecting the first ones that came to hand — from recent issues of the New York Times, Guardian, Washington Post, and Wall Street Journal. Articles from all of these newspapers landed in the middle range of the early systems thinking zone, with an average score of 1124.

Based on this information, and understanding that presidents generally attempt to tailor messages for their audience, we hypothesized that presidents would aim for a similar range.

The results

The results were mixed. Only Presidents Clinton and Bush consistently performed in the anticipated range. President Trump stood out by performing well-below this range. His scores were all identical — and roughly equivalent to the average for 12th graders in a reasonably good high school. President Obama also missed the mark, but in the opposite direction. In his first interviews, he scored at the top of the advanced systems thinking zone. But he didn’t stay there. By the time of September’s interview, he was responding in the early systems thinking zone. He even mentioned simplifying communication in this interview. Commenting on his messaging around health care, he said, “I’ve tried to keep it digestible… it’s very hard for people to get… their whole arms around it.”

The Table below shows the complexity scores received by our four presidents. (All of the interviews can readily be found in the presidential archives.)

Discussion

In the first article of this series, I discussed the importance of attempting to “hire” leaders whose complexity level scores are a good match for the complexity level of the issues they face in their roles. I then posed two questions:

  1. When asked by prominent journalists to explain their positions on complex issues, what is the average complexity level of national leaders’ responses?
  2. How does the complexity level of national leaders’ responses relate to the complexity of the issues they discuss?”

The answer to question 1 is that the average complexity level of presidents’ responses to interview questions varied dramatically. President Trump’s average complexity level score was 1054 — near the average score received by 12th graders in a good high school. President Bush’s average score was 1107 — near the average score received by entry- to mid-level managers in a large corporation. President Clinton’s average score was 1141, near the average score received by upper level managers in large corporations. Obama’s, average score was 1163 — near the the average score of senior leaders in large corporations. (Obama’s highest scores were closer to the average for CEOs in our database.)

With respect to question 2, the complexity level of presidents’ responses did not rise to the complexity level of many of the issues raised in their interviews. These issues ranged from international relations and the economy to health care and global warming. All of these are thorny problems involving multiple interacting and nested systems—early principles and above. Indeed, many of these problems are so complex that they are beyond the capability of even the most complex thinkers to fully grasp. (See my article on the Complexity Gap for more on this issue.) President Obama came closest to demonstrating a level of thinking complexity that would be adequate for coping with problems of this kind. (For more on this, see the third article in this series, If a U. S. President thought like a teenager…)

Obama also demonstrated some of the other qualities required for working well with complexity, such as skills for perspective seeking and perspective coordination, and familiarity with tools for working with complexity—but that’s another story.

In addition to addressing the two questions posed in the first article of this series, we were able to ask if these U. S. presidents seemed to tailor the complexity level of their interview responses for the audiences of the media outlets represented by journalists conducting the interviews.

First, the responses of presidents Bush and Clinton were in the same zone as a set of articles collected from these media outlets. Of course, we can’t be sure the alignment was intentional. There are other plausible explanations, including the possibility that what we witnessed was their best thinking.

In contrast, however, President Trump’s responses were well below the zone of the selected articles, making it difficult to argue that he was tailoring his responses for their audiences. Individuals whose thinking is complex are likely to find thinking at lower levels of complexity simplistic and unsatisfying. Delivering a message that is likely to lead to judgments of this kind does not seem like a rational tactic — especially for a politician.

It seems more plausible that President Trump was demonstrating his best thinking about the issues raised in his interviews. If so, his best would be far below the complexity level of most issues faced in his role. Indeed, individuals performing in the advanced linear thinking zone would not even be aware of the complexity inherent in many of the issues faced daily by national leaders.

President Obama confronted a different challenge. The complexity of thinking evident in his early interviews was very high. Even though, as with Bush and Clinton, it isn’t possible to say we witnessed Obama’s best thinking, we would argue that what we saw of President Obama’s thinking in his first two interviews was a reasonable fit to the complexity of the challenges in his role. However, it appears that Obama soon learned that in order to communicate effectively with citizens, he needed to make his communications more accessible.

In the results reported here, Democrats scored higher than Republicans. We have no reason to believe that conservative thinking is inherently less complex than liberal thinking. In fact, in the past, we have identified highly complex thinking in both conservative and liberal leaders.

We need leaders who can cope with highly complex issues, and particularly in a democracy, we also need leaders we can understand. President Obama showed himself to be a complex thinker, but he struggled with making his communications accessible. President Trump’s message is accessible, but our results suggest that he may not even be aware of the complexity of many issues faced in his role. Is it inevitable that the tension between complexity and accessibility will sometimes lead us to “hire” national leaders who are easy to understand, but lack the ability to work with complexity? And how can we even know if a leader is equipped with the thinking complexity that’s required if candidates routinely simplify communications for their audience? Given our increasingly volatile and complex world, these are questions that cry out for answers.

We don’t have these answers, and we’ve intentionally resisted going deeper into the implications of these findings. Instead, we’re hoping to stimulate discussion around our questions and the implications that arise from the findings presented here. Please feel free to chime in or contact us to further the conversation. And stay tuned. The Australian Prime Ministers are next!


*The speeches of presidents are generally written to be accessible to a middle school audience. The metrics used to determine reading level are not measures of complexity level, but reading level scores are moderately correlated with complexity level.


 


Lectica

Assessments: Adult assessments | K-12 assessments | CLAS demo

Subscriptions: LecticaLive for Schools | LecticaLive for Teachers | LecticaLive for Parents | My LecticaLive

Just for organizations: LecticaFirst | Capability Assessment | Fitness Assessment | Compatibility Assessment | Role Complexity Analysis | Lectica for the C-Suite | Organizational Snapshot

Courses: LAP-1: coachingLAP-2: recruitment | FOLA: foundations

Please follow and like us: